Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Theorems about circles" The following 21 pages are in this category, out ...
The Eight circles theorem and its dual can degenerate into Brianchon's theorem and Pascal's theorem when the conic in these theorems is a circle. Specifically: When circle () degenerates into a point, the Eight circles theorem degenerates into Brianchon's theorem [7] [9]. When circle () degenerates into a point and moves to infinity, the dual ...
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Download as PDF; Printable version; ... Pages in category "Theorems about quadrilaterals and circles" The following 6 pages are in this category, out of 6 total ...
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
Download as PDF; Printable version; In other projects ... Pages in category "Theorems about triangles and circles" The following 18 pages are in this category, out of ...
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.