When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number.For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10.

  3. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...

  4. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  6. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    In mathematics, the Lambert W function, also called the omega function or product logarithm, [1] is a multivalued function, namely the branches of the converse relation of the function f(w) = we w, where w is any complex number and e w is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758.

  7. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This relationship is determined by the base of natural logarithm, = …, and exhibits some geometrical similarity to the minimal surface energy principle. These scaling relations are useful for predicting a number of growth processes (epidemic spreading, droplet splashing, population growth, swirling rate of the bathtub vortex, distribution of ...

  8. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    In mathematics, the binary logarithm of a number n is often written as log 2 n. [10] However, several other notations for this function have been used or proposed, especially in application areas. Some authors write the binary logarithm as lg n, [11] [12] the notation listed in The Chicago Manual of Style. [13]

  9. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]