Search results
Results From The WOW.Com Content Network
Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an ...
In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle , a principle that says that the observable universe is ...
At any given time, a dynamical system has a state representing a point in an appropriate state space. This state is often given by a tuple of real numbers or by a vector in a geometrical manifold. The evolution rule of the dynamical system is a function that describes what future states follow from the current state.
The boundary side coefficient is set to zero (cutting the link with the boundary) and the flux crossing this boundary is introduced as a source which is appended to any existing and terms. Subsequently the resulting set of equations is solved to obtain the two dimensional distribution of the property φ {\displaystyle \varphi {}}
The following steps comprise the finite volume method for one-dimensional steady state diffusion - STEP 1 Grid Generation. Divide the domain into equal parts of small domain. Place nodal points at the center of each small domain. Dividing small domains and assigning nodal points (Figure 1) Create control volumes using these nodal points.
In the steady-state case, a spatial thermal gradient may (or may not) exist, but if it does, it does not change in time. This equation therefore describes the end result in all thermal problems in which a source is switched on (for example, an engine started in an automobile), and enough time has passed for all permanent temperature gradients ...