Search results
Results From The WOW.Com Content Network
Therefore, the effects of a neurotransmitter system depend on the connections of the neurons that use the transmitter, and the chemical properties of the receptors. Glutamate is used at the great majority of fast excitatory synapses in the brain and spinal cord. It is also used at most synapses that are "modifiable", i.e. capable of increasing ...
The ependyma is made up of ependymal cells called ependymocytes, a type of glial cell. These cells line the ventricles in the brain and the central canal of the spinal cord, which become filled with cerebrospinal fluid. These are nervous tissue cells with simple columnar shape, much like that of some mucosal epithelial cells. [2]
SP initiates expression of almost all known immunological chemical messengers . [20] [21] [22] Also, most of the cytokines, in turn, induce SP and the NK1 receptor. [23] [24] SP is particularly excitatory to cell growth and multiplication, [25] via usual, [26] as well as oncogenic drivers. [27] SP is a trigger for nausea and emesis. [28]
A neuron, neurone, [1] or nerve cell is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the brain and spinal cord and help to receive and conduct impulses.
Nerves that exit from the brain are called cranial nerves while those exiting from the spinal cord are called spinal nerves. The nervous system consists of nervous tissue which, at a cellular level, is defined by the presence of a special type of cell, called the neuron. Neurons have special structures that allow them to send signals rapidly ...
Neurotransmission (Latin: transmissio "passage, crossing" from transmittere "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), and bind to and react with the receptors on the dendrites of another neuron (the postsynaptic neuron) a ...
These neurons project into many regions of the brain and spinal cord, allowing histamine to mediate attention, arousal, and allergic responses. [3] Of the four types of histamine receptors (H 1 - H 4), H 3 is found in the central nervous system and is responsible for regulating histamine effects on neurotransmission. [7]
Norepinephrine is the main neurotransmitter used by the sympathetic nervous system, which consists of about two dozen sympathetic chain ganglia located next to the spinal cord, plus a set of prevertebral ganglia located in the chest and abdomen. [18]