Ad
related to: multiples and factors definition
Search results
Results From The WOW.Com Content Network
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .
231 is also a multiple of 3: one has 231 = 3 · 77, and thus n = 2 · 3 2 · 77. Continue with 77, and 3 as a first divisor candidate. 77 is not a multiple of 3, since the sum of its digits is 14, not a multiple of 3. It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7.
When one factor is an integer, the product is called a multiple. The order in which real or complex numbers are multiplied has no bearing on the product; this is known as the commutative law of multiplication. When matrices or members of various other associative algebras are multiplied, the product usually depends on the order of the factors.
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
where is the th successive prime number, and all omitted terms (a 22 to a 228) are factors with exponent equal to one (i.e. the number is ). More concisely, it is the product of seven distinct primorials:
This definition allows us to state Bézout's theorem and its generalizations precisely. This definition generalizes the multiplicity of a root of a polynomial in the following way. The roots of a polynomial f are points on the affine line , which are the components of the algebraic set defined by the polynomial.