When.com Web Search

  1. Ad

    related to: differential control volume

Search results

  1. Results From The WOW.Com Content Network
  2. Control volume - Wikipedia

    en.wikipedia.org/wiki/Control_volume

    The closed surface enclosing the region is referred to as the control surface. [1] At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant. As a continuum moves through the control volume, the mass entering the control volume is equal to the mass leaving the control volume.

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    A continuity equation (or conservation law) is an integral relation stating that the rate of change of some integrated property φ defined over a control volume Ω must be equal to the rate at which it is lost or gained through the boundaries Γ of the volume plus the rate at which it is created or consumed by sources and sinks inside the ...

  4. Discretization of Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Discretization_of_Navier...

    + = + + where n is the normal of the surface of the control volume and V is the volume. If the control volume is a polyhedron and values are assumed constant over each face, the area integrals can be written as summations over each face.

  5. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes.

  6. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  7. Finite volume method for one-dimensional steady state ...

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Create control volumes using these nodal points. Control volume and control volume & boundary faces (Figure 2) Create control volumes near the edges in such a way that the physical boundaries coincide with control volume boundaries (Figure 1). Assume a general nodal point 'P' for a general control volume. Adjacent nodal points to the East and ...

  8. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    where Ω represents the control volume. Since this equation must hold for any control volume, it must be true that the integrand is zero, from this the Cauchy momentum equation follows. The main step (not done above) in deriving this equation is establishing that the derivative of the stress tensor is one of the forces that constitutes F i. [1]

  9. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Hirsch, C. (1990), Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley. Laney, Culbert B.(1998), Computational Gas Dynamics, Cambridge University Press. LeVeque, Randall(1990), Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag.