Ads
related to: group theory mathematics questions examples
Search results
Results From The WOW.Com Content Network
Plus teacher and student package: Group Theory This package brings together all the articles on group theory from Plus, the online mathematics magazine produced by the Millennium Mathematics Project at the University of Cambridge, exploring applications and recent breakthroughs, and giving explicit definitions and examples of groups.
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group is the algorithmic problem of deciding whether two words in the generators represent the same element of . The word problem is a well-known example of an undecidable problem.
It was posed by William Burnside in 1902, making it one of the oldest questions in group theory, and was influential in the development of combinatorial group theory. It is known to have a negative answer in general, as Evgeny Golod and Igor Shafarevich provided a counter-example in 1964.
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
For example, in the symmetric group shown above, where ord(S 3) = 6, the possible orders of the elements are 1, 2, 3 or 6. The following partial converse is true for finite groups: if d divides the order of a group G and d is a prime number, then there exists an element of order d in G (this is sometimes called Cauchy's theorem).
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.
In abstract algebra, the group isomorphism problem is the decision problem of determining whether two given finite group presentations refer to isomorphic groups.. The isomorphism problem was formulated by Max Dehn, [1] and together with the word problem and conjugacy problem, is one of three fundamental decision problems in group theory he identified in 1911. [2]