Ad
related to: group theory mathematics questions and answers
Search results
Results From The WOW.Com Content Network
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.
The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group.It was posed by William Burnside in 1902, making it one of the oldest questions in group theory, and was influential in the development of combinatorial group theory.
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.
Algebra and Tiling: Homomorphisms in the Service of Geometry is a mathematics textbook on the use of group theory to answer questions about tessellations and higher dimensional honeycombs, partitions of the Euclidean plane or higher-dimensional spaces into congruent tiles.
The word problem was one of the first examples of an unsolvable problem to be found not in mathematical logic or the theory of algorithms, but in one of the central branches of classical mathematics, algebra. As a result of its unsolvability, several other problems in combinatorial group theory have been shown to be unsolvable as well.
The history of group theory, a mathematical domain studying groups in their various forms, has evolved in various parallel threads. There are three historical roots of group theory : the theory of algebraic equations , number theory and geometry .
In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.
The group G is a 2-group, that is, every element in G has finite order that is a power of 2. [1] The group G is periodic (as a 2-group) and not locally finite (as it is finitely generated). As such, it is a counterexample to the Burnside problem. The group G has intermediate growth. [2] The group G is amenable but not elementary amenable. [2]