Search results
Results From The WOW.Com Content Network
Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. [3] [4]Cholesterol is biosynthesized by all animal cells [citation needed] and is an essential structural and signaling component of animal cell membranes.
The mevalonate pathway begins with acetyl-CoA and ends with the production of IPP and DMAPP. [3] It is best known as the target of statins, a class of cholesterol lowering drugs. Statins inhibit HMG-CoA reductase within the mevalonate pathway.
Cholesterol can be made from acetyl-CoA through a multiple-step pathway known as isoprenoid pathway. Cholesterols are essential because they can be modified to form different hormones in the body such as progesterone. [6] 70% of cholesterol biosynthesis occurs in the cytosol of liver cells. [citation needed]
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, official symbol HMGCR) is the rate-controlling enzyme (NADH-dependent, EC 1.1.1.88; NADPH-dependent, EC 1.1.1.34) of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids.
Cholesterol total synthesis in chemistry describes the total synthesis of the complex biomolecule cholesterol and is considered a great scientific achievement. [1] The research group of Robert Robinson with John Cornforth ( Oxford University ) published their synthesis in 1951 [ 2 ] and that of Robert Burns Woodward with Franz Sondheimer ...
Lanosterol is a key four-ringed intermediate in cholesterol biosynthesis. [6] [7] In humans, lanosterol synthase is encoded by the LSS gene. [8] [9] In eukaryotes, lanosterol synthase is an integral monotopic protein associated with the cytosolic side of the endoplasmic reticulum. [10]
Cholesterol 7 alpha-hydroxylase is the rate-limiting enzyme in the synthesis of bile acid from cholesterol via the classic pathway, catalyzing the formation of 7α-hydroxycholesterol. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients.
Cholesterol also serves as a precursor for the biosynthesis of steroid hormones, bile acid [2] and vitamin D. In mammals cholesterol is either absorbed from dietary sources or is synthesized de novo. Up to 70-80% of de novo cholesterol synthesis occurs in the liver, and about 10% of de novo cholesterol synthesis occurs in the small intestine. [3]