Search results
Results From The WOW.Com Content Network
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the ...
In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series (or Epstein zeta function) in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series.
where is the Kronecker delta or identity matrix. Finite-dimensional real vector spaces with (pseudo-)metrics are classified up to signature, a coordinate-free property which is well-defined by Sylvester's law of inertia. Possible metrics on real space are indexed by signature (,).
The Kronecker delta is one of the family of generalized Kronecker deltas. The generalized Kronecker delta of degree 2 p may be defined in terms of the Kronecker delta by (a common definition includes an additional multiplier of p ! on the right):
This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two rotations. He derived this formula in 1840 (see page 408). [17] The three rotation axes A, B, and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation angles.
4 Connection formula for Wilson polynomials. 5 q-analog. ... In mathematics, ... is the Kronecker delta function and the weight functions are
where (g jk) is the inverse of the matrix (g jk), defined as (using the Kronecker delta, and Einstein notation for summation) g ji g ik = δ j k. Although the Christoffel symbols are written in the same notation as tensors with index notation, they do not transform like tensors under a change of coordinates.