Search results
Results From The WOW.Com Content Network
The sign of the covariance of two random variables X and Y. In probability theory and statistics, covariance is a measure of the joint variability of two random variables. [1] The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables.
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
In statistics, the Pearson correlation coefficient (PCC) [a] is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always ...
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related.
In statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both ...
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a row vector whose j th element (j = 1, ..., K) is one of the random variables. [1] The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample ...
Statistical analyses of multivariate data often involve exploratory studies of the way in which the variables change in relation to one another and this may be followed up by explicit statistical models involving the covariance matrix of the variables. Thus the estimation of covariance matrices directly from observational data plays two roles: