Search results
Results From The WOW.Com Content Network
AND-OR-invert (AOI) logic and AOI gates are two-level compound (or complex) logic functions constructed from the combination of one or more AND gates followed by a NOR gate (equivalent to an OR gate through an Inverter gate, which is the "OI" part of "AOI").
An XNOR gate can be implemented using a NAND gate and an OR-AND-Invert gate, as shown in the following picture. [3] This is based on the identity ¯ (¯) ¯ An alternative, which is useful when inverted inputs are also available (for example from a flip-flop), uses a 2-2 AND-OR-Invert gate, shown on below on the right.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of the negation of the OR operator.
A logic circuit diagram for a 4-bit carry lookahead binary adder design using only the AND, OR, and XOR logic gates.. A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
An input-consuming logic gate L is reversible if it meets the following conditions: (1) L(x) = y is a gate where for any output y, there is a unique input x; (2) The gate L is reversible if there is a gate L´(y) = x which maps y to x, for all y.
In the early days, logic design involved manipulating the truth table representations as Karnaugh maps. The Karnaugh map-based minimization of logic is guided by a set of rules on how entries in the maps can be combined. A human designer can typically only work with Karnaugh maps containing up to four to six variables.