Ad
related to: quantum wave function formula chemistry ppt slides
Search results
Results From The WOW.Com Content Network
The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in fluid mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in wave theory; List of photonics equations; List of relativistic equations
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. [ 1 ] : 1–2 Its discovery was a significant landmark in the development of quantum mechanics .
The term "wave function" is typically used for a different mathematical representation of the quantum state, one that uses spatial coordinates also called the "position representation". [9]: 324 When the wave function representation is used, the "reduction" is called "wave function collapse".
= if and only if is exactly equal to the wave function of the ground state of the studied system. The variational principle formulated above is the basis of the variational method used in quantum mechanics and quantum chemistry to find approximations to the ground state.
It relates the scattered wave function with the interaction that produces the scattering (the scattering potential) and therefore allows calculation of the relevant experimental parameters (scattering amplitude and cross sections). The most fundamental equation to describe any quantum phenomenon, including scattering, is the Schrödinger equation.
In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.
Born's idea was soon taken over by Niels Bohr in Copenhagen who then became the "father" of the Copenhagen interpretation of quantum mechanics. Schrödinger's wave function can be seen to be closely related to the classical Hamilton–Jacobi equation. The correspondence to classical mechanics was even more explicit, although somewhat more ...