Search results
Results From The WOW.Com Content Network
Theoretical thermal water splitting efficiencies. [11]60% efficient at 1000°C Steam reforming of hydrocarbons to hydrogen is 70-85% efficient [12]. High temperature electrolysis is more efficient economically than traditional room-temperature electrolysis because some of the energy is supplied as heat, which is cheaper than electricity, and also because the electrolysis reaction is more ...
Most computerized databases will create a table of thermodynamic values using the values from the datafile. For MgCl 2 (c,l,g) at 1 atm pressure: Thermodynamic properties table for MgCl 2 (c,l,g), from the FREED datafile. Some values have truncated significant figures for display purposes. The table format is a common way to display ...
The rate of delivery of heat is equal to where T is the temperature (the standard temperature, in this case) and dS/dt is the rate of entropy production in the cell. At the thermoneutral voltage, this rate will be zero, which indicates that the thermoneutral voltage may be calculated from the enthalpy .
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: . Temperature 298.15 K (25.00 °C; 77.00 °F); ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
For a water electrolysis unit operating at a constant temperature of 25 °C without the input of any additional heat energy, electrical energy would have to be supplied at a rate equivalent of the enthalpy (heat) of reaction or 285.830 kJ (0.07940 kWh) per gram mol of water consumed. [6] It would operate at a cell voltage of 1.48 V.
Electrolysis of water at 298 K (25 °C) requires 285.83 kJ of energy per mole in order to occur, [6] and the reaction is increasingly endothermic with increasing temperature. However, the energy demand may be reduced due to the Joule heating of an electrolysis cell, which may be utilized in the water splitting process at high temperatures.
For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C At triple point. An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to: