When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    The Hosmer–Lemeshow test is a statistical test for goodness of fit and calibration for logistic regression models. It is used frequently in risk prediction models. The test assesses whether or not the observed event rates match expected event rates in subgroups of the model population.

  3. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  4. Logistic model tree - Wikipedia

    en.wikipedia.org/wiki/Logistic_model_tree

    In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. [ 1 ] [ 2 ]

  5. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one.

  6. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Conditional logistic regression is an extension of logistic regression that allows one to account for stratification and matching. Its main field of application is observational studies and in particular epidemiology. It was devised in 1978 by Norman Breslow, Nicholas Day, Katherine Halvorsen, Ross L. Prentice and C. Sabai. [1]

  7. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is a particular solution to classification problems that use a linear combination of the observed features and some problem-specific parameters to estimate the probability of each particular value of the dependent variable.

  8. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    First, with a data sample of length n, the data analyst may run the regression over only q of the data points (with q < n), holding back the other n – q data points with the specific purpose of using them to compute the estimated model’s MSPE out of sample (i.e., not using data that were used in the model estimation process).

  9. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    The logistic loss is convex and grows linearly for negative values which make it less sensitive to outliers. The logistic loss is used in the LogitBoost algorithm . The minimizer of I [ f ] {\displaystyle I[f]} for the logistic loss function can be directly found from equation (1) as