Search results
Results From The WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.
Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water.Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO).
Penetrating solutes can diffuse through the cell membrane, causing momentary changes in cell volume as the solutes "pull" water molecules with them. Non-penetrating solutes cannot cross the cell membrane; therefore, the movement of water across the cell membrane (i.e., osmosis ) must occur for the solutions to reach equilibrium .
Osmotic pressure is the basis of filtering ("reverse osmosis"), a process commonly used in water purification. The water to be purified is placed in a chamber and put under an amount of pressure greater than the osmotic pressure exerted by the water and the solutes dissolved in it.
Pure water is usually described as tasteless and odorless, although humans have specific sensors that can feel the presence of water in their mouths, [85] [86] and frogs are known to be able to smell it. [87] However, water from ordinary sources (including mineral water) usually has many dissolved substances that may give it varying tastes and ...
Diffusion current can also be described by Fick's first law = /, where J is the diffusion current density (amount of substance) per unit area per unit time, n (for ideal mixtures) is the electron density, x is the position [length].
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...