Search results
Results From The WOW.Com Content Network
In magnetism, the Curie–Weiss law describes the magnetic susceptibility χ of a ferromagnet in the paramagnetic region above the Curie temperature: = where C is a material-specific Curie constant, T is the absolute temperature, and T C is the Curie temperature, both measured in kelvin.
Spontaneous magnetization is the appearance of an ordered spin state (magnetization) at zero applied magnetic field in a ferromagnetic or ferrimagnetic material below a critical point called the Curie temperature or T C.
Fitting experimental data to this equation determines a phenomenological Curie–Weiss temperature, . There is a second temperature, T c {\displaystyle T_{c}} , where magnetic order in the material begins to develop, as evidenced by a non-analytic feature in χ ( T ) {\displaystyle \chi (T)} .
Curie's law is valid under the commonly encountered conditions of low magnetization (μ B H ≲ k B T), but does not apply in the high-field/low-temperature regime where saturation of magnetization occurs (μ B H ≳ k B T) and magnetic dipoles are all aligned with the applied field. When the dipoles are aligned, increasing the external field ...
The Curie–Weiss law is an adapted version of Curie's law. The Curie–Weiss law is a simple model derived from a mean-field approximation, this means it works well for the materials temperature, T, much greater than their corresponding Curie temperature, T C, i.e. T ≫ T C; it however fails to describe the magnetic susceptibility, χ, in the ...
In a paramagnetic system, that is, a system in which the magnetization vanishes without the influence of an external magnetic field, assuming some simplifying assumptions (such as the sample system being ellipsoidal), one can derive a few compact thermodynamic relations. [4]
The Brillouin and Langevin functions are a pair of special functions that appear when studying an idealized paramagnetic material in statistical mechanics.These functions are named after French physicists Paul Langevin and Léon Brillouin who contributed to the microscopic understanding of magnetic properties of matter.
An illustration of the precession of a spin wave with a wavelength that is eleven times the lattice constant about an applied magnetic field. The projection of the magnetization of the same spin wave along the chain direction as a function of distance along the spin chain.