When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For height-balanced binary trees, the height is defined to be logarithmic (⁡) in the number of items. This is the case for many binary search trees, such as AVL trees and red–black trees . Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items.

  3. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Both AVL trees and red–black (RB) trees are self-balancing binary search trees and they are related mathematically. Indeed, every AVL tree can be colored red–black, [14] but there are RB trees which are not AVL balanced. For maintaining the AVL (or RB) tree's invariants, rotations play an important role.

  4. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A tree whose root node has two subtrees, both of which are full binary trees. A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full ...

  5. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    A node is α-weight-balanced if weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n]. [7] Here, α is a numerical parameter to be determined when implementing weight balanced trees. Larger values of α produce "more balanced" trees, but not all values of α are appropriate; Nievergelt and Reingold proved that

  6. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.

  7. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Various height-balanced binary search trees were introduced to confine the tree height, such as AVL trees, Treaps, and red–black trees. [5] The AVL tree was invented by Georgy Adelson-Velsky and Evgenii Landis in 1962 for the efficient organization of information. [6] [7] It was the first self-balancing binary search tree to be invented. [8]

  8. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Removing a point from a balanced k-d tree takes O(log n) time. Querying an axis-parallel range in a balanced k-d tree takes O(n 1−1/k +m) time, where m is the number of the reported points, and k the dimension of the k-d tree. Finding 1 nearest neighbour in a balanced k-d tree with randomly distributed points takes O(log n) time on average.

  9. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.