Search results
Results From The WOW.Com Content Network
When vehicles collide, the damage increases with the relative velocity of the vehicles, the damage increasing as the square of the velocity since it is the impact kinetic energy (1/2 mv 2) which is the variable of importance. Much design effort is made to improve the impact resistance of cars so as to minimize user injury.
The impact depth of a projectile is the distance it penetrates into a target ... If the impact velocity is greater than the speed of sound within the target or ...
Alternatively the final velocity of a particle, v 2 (v A2 or v B2) is expressed by: = (+) Where: e is the coefficient of restitution. v CoM is the velocity of the center of mass of the system of two particles: = + +
The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision has its own COR. When a single object is described as having a given coefficient of restitution, as if it were an intrinsic property without reference to a second object, some assumptions have been made – for example that the collision is with ...
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
In mechanics and physics, shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation. Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity).
The formula for the velocities after a one-dimensional collision is: = + + + = + + + where v a is the final velocity of the first object after impact; v b is the final velocity of the second object after impact
The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...