When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Annihilation - Wikipedia

    en.wikipedia.org/wiki/Annihilation

    In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. [1]

  3. Antimatter - Wikipedia

    en.wikipedia.org/wiki/Antimatter

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap .

  4. Gravitational interaction of antimatter - Wikipedia

    en.wikipedia.org/wiki/Gravitational_interaction...

    The CPT theorem implies that the difference between the properties of a matter particle and those of its antimatter counterpart is completely described by C-inversion. Since this C-inversion does not affect gravitational mass, the CPT theorem predicts that the gravitational mass of antimatter is the same as that of ordinary matter. [5]

  5. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  6. Antimatter weapon - Wikipedia

    en.wikipedia.org/wiki/Antimatter_weapon

    An antimatter weapon is a theoretically possible device using antimatter as a power source, a propellant, or an explosive for a weapon.Antimatter weapons are currently too costly and unreliable to be viable in warfare, as producing antimatter is enormously expensive (estimated at US$6 billion for every 100 nanograms), the quantities of antimatter generated are very small, and current ...

  7. Matter creation - Wikipedia

    en.wikipedia.org/wiki/Matter_creation

    The latter case occurs if the neutrinos are Majorana particles, being at the same time matter and antimatter, according to the definition given just above. [1] In a wider sense, one can use the word matter simply to refer to fermions. In this sense, matter and antimatter particles (such as an electron and a positron) are

  8. Antihydrogen - Wikipedia

    en.wikipedia.org/wiki/Antihydrogen

    Recent theoretical framework for negative mass and repulsive gravity (antigravity) between matter and antimatter has been developed, and the theory is compatible with CPT theorem. [9] When antihydrogen comes into contact with ordinary matter, its constituents quickly annihilate. The positron annihilates with an electron to produce gamma rays.

  9. Electron–positron annihilation - Wikipedia

    en.wikipedia.org/wiki/Electron–positron...

    As a result, it becomes much easier to produce particles such as neutrinos that interact only weakly with other matter. The heaviest particle pairs yet produced by electron–positron annihilation in particle accelerators are W + – W − pairs (mass 80.385 GeV/c 2 × 2). The heaviest single-charged particle is the Z boson (mass 91.188 GeV/c 2).