Ad
related to: two phase transformer diagram
Search results
Results From The WOW.Com Content Network
A simplified diagram of a two-phase alternator [1] Two-phase electrical power was an early 20th-century polyphase alternating current electric power distribution system. Two circuits were used, with voltage phases differing by one-quarter of a cycle, 90°. Usually circuits used four wires, two for each phase.
Assuming the desired voltage is the same on the two and three phase sides, the Scott-T transformer connection (shown right) consists of a centre-tapped 1:1 ratio main transformer, T1, and a √ 3 /2(≈86.6%) ratio teaser transformer, T2. The centre-tapped side of T1 is connected between two of the phases on the three-phase side.
Transformers are typically sized on an average load of 1 to 2 kW per household, and the service fuses and cable is sized to allow any one property to draw a peak load of perhaps ten times this. For industrial customers, 3-phase 690 / 400 volt is also available, or may be generated locally. [19]
One voltage cycle of a three-phase system. A polyphase system (the term coined by Silvanus Thompson) is a means of distributing alternating-current (AC) electrical power that utilizes more than one AC phase, which refers to the phase offset value (in degrees) between AC in multiple conducting wires; phases may also refer to the corresponding terminals and conductors, as in color codes.
For polyphase systems, multiple single-phase transformers can be used, or all phases can be connected to a single polyphase transformer. For a three phase transformer, the three primary windings are connected together and the three secondary windings are connected together. [5]
A "transformer bank", widely used in North America: three single-phase transformers connected to make a 3-phase transformer. The low-voltage secondary windings are attached to three or four terminals on the transformer's side. In North American residences and small businesses, the secondary is often the split-phase 120/240-volt system. The 240 ...
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
Similar to a wye winding, but two windings from each phase are arranged so that the three legs are "bent" when the phase diagram is drawn. Zigzag-wound transformers have special characteristics and are not commonly used where these characteristics are not needed. N (uppercase): indicates that a system neutral is connected to the high-voltage side.