Search results
Results From The WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon. [note 3] Newton's first law expresses the principle of inertia: the natural behavior of a body is to move in a straight line at constant speed. A body's motion preserves the ...
The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass. For simple objects with geometric symmetry, one can often determine the moment of inertia in an exact closed-form expression .
The mass of an object as measured in its own frame of reference is called its rest mass or invariant mass and is sometimes written . If an object moves with velocity v {\displaystyle \mathbf {v} } in some other reference frame, the quantity m = γ ( v ) m 0 {\displaystyle m=\gamma (\mathbf {v} )m_{0}} is often called the object's "relativistic ...
Hence, with respect to an inertial frame, an object or body accelerates only when a physical force is applied, and (following Newton's first law of motion), in the absence of a net force, a body at rest will remain at rest and a body in motion will continue to move uniformly—that is, in a straight line and at constant speed.
The term mass in special relativity usually refers to the rest mass of the object, which is the Newtonian mass as measured by an observer moving along with the object. The invariant mass is another name for the rest mass of single particles. The more general invariant mass (calculated with a more complicated formula) loosely corresponds to the ...
An arbitrary object's moment of inertia thus depends on the spatial distribution of its mass. In general, given an object of mass m, an effective radius k can be defined, dependent on a particular axis of rotation, with such a value that its moment of inertia around the axis is =, where k is known as the radius of gyration around the axis.
In classical mechanics, the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed. The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: