When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Deuterated chloroform - Wikipedia

    en.wikipedia.org/wiki/Deuterated_chloroform

    Commercial chloroform-d does, however, still contain a small amount (0.2% or less) of non-deuterated chloroform; this results in a small singlet at 7.26 ppm, known as the residual solvent peak, which is frequently used as an internal chemical shift reference. In carbon-13 NMR spectroscopy, the sole carbon in deuterated chloroform shows a ...

  3. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  4. Carbon-13 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_nuclear_magnetic...

    Although ca. 1 mln. times less sensitive than 1 H NMR spectroscopy, 13 C NMR spectroscopy is widely used for characterizing organic and organometallic compounds, primarily because 1H-decoupled 13C-NMR spectra are more simple, have a greater sensitivity to differences in the chemical structure, and, thus, are better suited for identifying ...

  5. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Deuterated solvents permit the use of deuterium frequency-field lock (also known as deuterium lock or field lock) to offset the effect of the natural drift of the NMR's magnetic field . In order to provide deuterium lock, the NMR constantly monitors the deuterium signal resonance frequency from the solvent and makes changes to the B 0 ...

  6. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The spin interaction that is usually employed for structural analyses via solid state NMR spectroscopy is the magnetic dipolar interaction. [8] Additional knowledge about other interactions within the studied system like the chemical shift or the electric quadrupole interaction can be helpful as well, and in some cases solely the chemical shift has been employed as e.g. for zeolites. [9]

  7. Nuclear magnetic resonance decoupling - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Magnetic_Resonance...

    This effect causes NMR signals in a spectrum to be split into multiple peaks. Decoupling fully or partially eliminates splitting of the signal between the nuclei irradiated and other nuclei such as the nuclei being analyzed in a certain spectrum. NMR spectroscopy and sometimes decoupling can help determine structures of chemical compounds.

  8. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    The spectrum that appears along both the horizontal and vertical axes is a regular one dimensional 1 H NMR spectrum. The bulk of the peaks appear along the diagonal, while cross-peaks appear symmetrically above and below the diagonal. COSY-90 is the most common COSY experiment. In COSY-90, the p1 pulse tilts the nuclear spin by 90°.

  9. Carbon-13 NMR satellite - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_NMR_satellite

    Carbon satellites in physics and spectroscopy, are small peaks that can be seen shouldering the main peaks in the nuclear magnetic resonance (NMR) spectrum.These peaks can occur in the NMR spectrum of any NMR active atom (e.g. 19 F or 31 P NMR) where those atoms adjoin a carbon atom (and where the spectrum is not 13 C-decoupled, which is usually the case).