Search results
Results From The WOW.Com Content Network
The term Bernoulli sequence is often used informally to refer to a realization of a Bernoulli process. However, the term has an entirely different formal definition as given below. Suppose a Bernoulli process formally defined as a single random variable (see preceding section). For every infinite sequence x of coin flips, there is a sequence of ...
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .
But for a Markov chain one is usually more interested in a stationary state that is the limit of the sequence of distributions for some initial distribution. The values of a stationary distribution π i {\displaystyle \textstyle \pi _{i}} are associated with the state space of P and its eigenvectors have their relative proportions preserved.
Suppose (X n) is a sequence of random variables with Pr(X n = 0) = 1/n 2 for each n. The probability that X n = 0 occurs for infinitely many n is equivalent to the probability of the intersection of infinitely many [X n = 0] events. The intersection of infinitely many such events is a set of outcomes common to all of them.
For an infinite sequence, one is often more interested in the long-term behaviors of the sequence than the behaviors it exhibits early on. In which case, one way to formally capture this concept is to say that the sequence possesses a certain property eventually, or equivalently, that the property is satisfied by one of its subsequences (), for some .
A sequence can also have an infinite limit: as , the sequence (). This direct definition is easier to extend to one-sided infinite limits. While mathematicians do talk about functions approaching limits "from above" or "from below", there is not a standard mathematical notation for this as there is for one-sided limits.
The limits inferior and superior are related to big-O notation in that they bound a sequence only "in the limit"; the sequence may exceed the bound. However, with big-O notation the sequence can only exceed the bound in a finite prefix of the sequence, whereas the limit superior of a sequence like e − n may actually be less than all elements ...
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...