Search results
Results From The WOW.Com Content Network
Let G be a k-regular graph with 2n nodes. If k is sufficiently large, it is known that G has to be 1-factorable: If k = 2n − 1, then G is the complete graph K 2n, and hence 1-factorable (see above). If k = 2n − 2, then G can be constructed by removing a perfect matching from K 2n. Again, G is 1-factorable.
Triangle-free graphs: Triangle K 3: Induced subgraph Definition Planar graphs: K 5 and K 3,3: Homeomorphic subgraph Kuratowski's theorem: K 5 and K 3,3: Graph minor Wagner's theorem: Outerplanar graphs: K 4 and K 2,3: Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of ...
An example graph, with the properties of being planar and being connected, and with order 6, size 7, diameter 3, girth 3, vertex connectivity 1, and degree sequence <3, 3, 3, 2, 2, 1> In graph theory, a graph property or graph invariant is a property of graphs that depends only on the abstract structure, not on graph representations such as ...
In graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the ...
A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...
The Grötzsch graph is a triangle-free graph that cannot be colored with fewer than four colors. Much research about triangle-free graphs has focused on graph coloring. Every bipartite graph (that is, every 2-colorable graph) is triangle-free, and Grötzsch's theorem states that every triangle-free planar graph may be 3-colored. [8]
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G 2 is called the square of G, G 3 is called the cube of G, etc. [1] Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.