When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula ′ where ′ is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f ; that is, the infinitesimal absolute change in f, namely f ′ , {\displaystyle f',} scaled by the current ...

  3. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate ... which is the product rule for derivatives. ...

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  5. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule ... The logarithmic derivative of a function f, denoted here Logder(f), is the derivative of the logarithm of the function.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...

  7. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the ... , which justifies taking the absolute value of the functions for logarithmic differentiation. ...

  8. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    If the natural logarithm is defined as the integral ⁡ =, then the derivative immediately follows from the first part of the fundamental theorem of calculus. On the other hand, if the natural logarithm is defined as the inverse of the (natural) exponential function, then the derivative (for x > 0 ) can be found by using the properties of the ...

  9. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.