When.com Web Search

  1. Ad

    related to: hilbert's tenth problem wikipedia download

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.

  5. Diophantine set - Wikipedia

    en.wikipedia.org/wiki/Diophantine_set

    Matiyasevich's theorem, also called the Matiyasevich–Robinson–Davis–Putnam or MRDP theorem, says: . Every computably enumerable set is Diophantine, and the converse.. A set S of integers is computably enumerable if there is an algorithm such that: For each integer input n, if n is a member of S, then the algorithm eventually halts; otherwise it runs forever.

  6. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    "The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [6] Determining the domain of a solution to an ordinary differential equation of the form

  7. Category:Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Category:Hilbert's_problems

    Hilbert's third problem; Hilbert's fourth problem; Hilbert's fifth problem; No small subgroup; Hilbert's sixth problem; Hilbert's seventh problem; Hilbert's eighth problem; Hilbert's ninth problem; Hilbert's tenth problem; Hilbert's eleventh problem; Hilbert's twelfth problem; Hilbert's thirteenth problem; Hilbert's fourteenth problem; Hilbert ...

  8. Martin Davis (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Martin_Davis_(mathematician)

    His work on Hilbert's tenth problem led to the MRDP theorem. He also advanced the Post–Turing model and co-developed the Davis–Putnam–Logemann–Loveland (DPLL) algorithm, which is foundational for Boolean satisfiability solvers. Davis won the Leroy P. Steele Prize, the Chauvenet Prize (with Reuben Hersh), and the Lester R. Ford Award.

  9. David Hilbert - Wikipedia

    en.wikipedia.org/wiki/David_Hilbert

    Hilbert continued to make changes in the text and several editions appeared in German. The 7th edition was the last to appear in Hilbert's lifetime. New editions followed the 7th, but the main text was essentially not revised. [g] Hilbert's approach signaled the shift to the modern axiomatic method.