Search results
Results From The WOW.Com Content Network
The Russian-Soviet mathematician and mechanician Nikolay Gur'yevich Chetaev working at the Kazan Aviation Institute in the 1930s was the first who realized the incredible magnitude of the discovery made by A. M. Lyapunov. The contribution to the theory made by N. G. Chetaev [2] was so significant that many mathematicians, physicists and ...
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory .
For asymptotic stability, the state is also required to converge to =. A control-Lyapunov function is used to test whether a system is asymptotically stabilizable , that is whether for any state x there exists a control u ( x , t ) {\displaystyle u(x,t)} such that the system can be brought to the zero state asymptotically by applying the ...
Download as PDF; Printable version; ... Pages in category "Stability theory" ... Lyapunov stability; Lyapunov–Malkin theorem; M.
The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Malkin ) is a mathematical theorem detailing stability of nonlinear systems. [ 1 ] [ 2 ] Theorem
Learn how to download and install or uninstall the Desktop Gold software and if your computer meets the system requirements.
Lyapunov theory, a theorem related to the stability of solutions of differential equations near a point of equilibrium; Lyapunov central limit theorem, variant of the central limit theorem; Lyapunov vector-measure theorem, theorem in measure theory that the range of any real-valued, non-atomic vector measure is compact and convex