Search results
Results From The WOW.Com Content Network
The main alcohol dehydrogenase in yeast is larger than the human one, consisting of four rather than just two subunits. It also contains zinc at its catalytic site. Together with the zinc-containing alcohol dehydrogenases of animals and humans, these enzymes from yeasts and many bacteria form the family of "long-chain"-alcohol dehydrogenases.
Trypsinization is the process of cell dissociation using trypsin, a proteolytic enzyme which breaks down proteins, to dissociate adherent cells from the vessel in which they are being cultured. When added to cell culture, trypsin breaks down the proteins that enable the cells to adhere to the vessel.
In enzymology, a phosphoribosylanthranilate isomerase (PRAI) (EC 5.3.1.24) is an enzyme that catalyzes the third step of the synthesis of the amino acid tryptophan. [1]This enzyme participates in the phenylalanine, tyrosine and tryptophan biosynthesis pathway, also known as the aromatic amino acid biosynthesis pathway
Structure of the trp operon. The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. [1]
Pure bacterial culture must be grown in sterile tryptophan or peptone broth for 24–48 hours before performing the test. Following incubation, five drops of Kovac's reagent (isoamyl alcohol, para-Dimethylaminobenzaldehyde, concentrated hydrochloric acid) are added to the culture broth.
Tryptophan synthase or tryptophan synthetase is an enzyme (EC 4.2.1.20) that catalyzes the final two steps in the biosynthesis of tryptophan. [1] [2] It is commonly found in Eubacteria, [3] Archaebacteria, [4] Protista, [5] Fungi, [6] and Plantae. [7] However, it is absent from Animalia. [8] It is typically found as an α2β2 tetramer.
Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins.
Tryptophan 2,3-dioxygenase plays a central role in the physiological regulation of tryptophan flux in the human body, as part of the overall biological process of tryptophan metabolism. TDO catalyses the first and rate-limiting step of tryptophan degradation along the kynurenine pathway and thereby regulates systemic tryptophan levels. [5]