Search results
Results From The WOW.Com Content Network
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).
A lattice in which the conventional basis is primitive is called a primitive lattice, while a lattice with a non-primitive conventional basis is called a centered lattice. The choice of an origin and a basis implies the choice of a unit cell which can further be used to describe a crystal pattern.
Corner transfer matrices are related to the partition function in a simple way. In our simplified example, we construct the full lattice from four rotated copies of the lattice quadrant, where the inner boundary spin sets σ, σ', σ" and σ'" are allowed to differ: The partition function is then written in terms of the corner transfer matrix A as
The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 2 1 is a 180° (twofold) rotation followed by a translation of 1 / 2 of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of 1 / 3 of ...
In matrix notation, = /, where has orthonormal basis vectors {} and the matrix is composed of the given column vectors {}. The matrix G − 1 / 2 {\displaystyle G^{-1/2}} is guaranteed to exist. Indeed, G {\displaystyle G} is Hermitian, and so can be decomposed as G = U D U † {\displaystyle G=UDU^{\dagger }} with U {\displaystyle U} a unitary ...
Lattice reduction in two dimensions: the black vectors are the given basis for the lattice (represented by blue dots), the red vectors are the reduced basis. In mathematics, the goal of lattice basis reduction is to find a basis with short, nearly orthogonal vectors when given an integer lattice basis as input. This is realized using different ...
Vectors and planes in a crystal lattice are described by the three-value Miller index notation. This syntax uses the indices h, k, and ℓ as directional parameters. [4] By definition, the syntax (hkℓ) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /ℓ, or some multiple thereof. That is, the Miller indices are ...