When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics.

  3. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  4. Hilbert's sixteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_sixteenth_problem

    The second problem also remains unsolved: no upper bound for the number of limit cycles is known for any n > 1, and this is what usually is meant by Hilbert's sixteenth problem in the field of dynamical systems. The Spanish Royal Society for Mathematics published an explanation of Hilbert's sixteenth problem. [2]

  5. Category:Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Category:Hilbert's_problems

    Pages in category "Hilbert's problems" The following 35 pages are in this category, out of 35 total. This list may not reflect recent changes. ...

  6. Hilbert's fourteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourteenth_problem

    In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated. The setting is as follows: Assume that k is a field and let K be a subfield of the field of rational functions in n variables, k(x 1, ..., x n) over k.

  7. Hilbert's fourth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourth_problem

    In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...

  8. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares .

  9. Hilbert–Arnold problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Arnold_problem

    In mathematics, particularly in dynamical systems, the Hilbert–Arnold problem is an unsolved problem concerning the estimation of limit cycles.It asks whether in a generic [disambiguation needed] finite-parameter family of smooth vector fields on a sphere with a compact parameter base, the number of limit cycles is uniformly bounded across all parameter values.