Search results
Results From The WOW.Com Content Network
In computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine [1] [2] (devised by English mathematician and computer scientist Alan Turing).
Among the 88 possible unique elementary cellular automata, Rule 110 is the only one for which Turing completeness has been directly proven, although proofs for several similar rules follow as simple corollaries (e.g. Rule 124, which is the horizontal reflection of Rule 110). Rule 110 is arguably the simplest known Turing complete system. [2] [5]
The images below show the history of rules 30 and 110 when the starting configuration consists of a 1 (at the top of each image) surrounded by 0s. Each row of pixels represents a generation in the history of the automaton, with t=0 being the top row. Each pixel is colored white for 0 and black for 1. Rule 30
A universal constructor can be built which contains a Turing complete computer, and which can build many types of complex objects, including more copies of itself. [2] On November 23, 2013, Dave Greene built the first replicator in the Game of Life that creates a complete copy of itself, including the instruction tape. [48]
Langton's ant is a two-dimensional Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. [1] The idea has been generalized in several different ways, such as turmites which add more colors and more states.
The counter machine models go by a number of different names that may help to distinguish them by their peculiarities. In the following the instruction "JZDEC ( r )" is a compound instruction that tests to see if a register r is empty; if so then jump to instruction I z, else if not then DECrement the contents of r:
In theoretical computer science, a Markov algorithm is a string rewriting system that uses grammar-like rules to operate on strings of symbols. Markov algorithms have been shown to be Turing-complete, which means that they are suitable as a general model of computation and can represent any mathematical expression from its simple notation.
Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.