Search results
Results From The WOW.Com Content Network
Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid , which is saturated at 68.85% HBr by weight at room temperature.
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
From numbers of equivalent portions of acid bromine formed from the previous reaction, the ratio between oxygen and bromine was calculated, with the exact value of O:Br (0.149975:0.3745), suggesting the acid compound contains two oxygen atom to one bromine atom. Thus, the chemical structure of the acid compound was deducted as HBrO 2. [2]
Industrially, it is mainly produced by the reaction of hydrogen gas with bromine gas at 200–400 °C with a platinum catalyst. However, reduction of bromine with red phosphorus is a more practical way to produce hydrogen bromide in the laboratory: [2] 2 P + 6 H 2 O + 3 Br 2 → 6 HBr + 2 H 3 PO 3 H 3 PO 3 + H 2 O + Br 2 → 2 HBr + H 3 PO 4
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determine the position of each atom. Molecular geometry influences several properties of a substance ...
Bromic acid, also known as hydrogen bromate, is an oxoacid with the molecular formula HBrO 3. It only exists in aqueous solution. [1] [2] It is a colorless solution that turns yellow at room temperature as it decomposes to bromine. [1] [3] Bromic acid and bromates are powerful oxidizing agents and are common ingredients in Belousov ...
Through the use of Lewis structures, the placement of electrons, whether it is in a bond or in lone pairs, will allow for the identification of the formal charges of the atoms in the molecule to understand the stability and determine the most likely molecule (based on molecular geometry difference) that would be formed in a reaction.
Bent's rule is able to characterize molecule geometry with accuracy. [11] [5] Bent's rule provides a reliable and robust framework for predicting the bond angles of molecules. Bent's rule accuracy and precision in predicting the geometry of real-world molecules continues to demonstrate its credibility.