Ad
related to: bragg grating waveguide for sale craigslist by owner
Search results
Results From The WOW.Com Content Network
Typically the grating period is the same size as the Bragg wavelength, as shown above. For a grating that reflects at 1,500 nm, the grating period is 500 nm, using a refractive index of 1.5. Longer periods can be used to achieve much broader responses than are possible with a standard FBG. These gratings are called long-period fiber grating ...
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control.
A distributed Bragg reflector laser (DBR) is a type of single frequency laser diode. Other practical types of single frequency laser diodes include DFB lasers and external cavity diode lasers. A fourth type, the cleaved-coupled-cavity laser has not proven to be commercially viable.
Optical add-drop multiplexer, using a fiber Bragg grating and two circulators. An optical add-drop multiplexer (OADM) is a device used in wavelength-division multiplexing (WDM) systems for multiplexing and routing different channels of light into or out of a single-mode fiber (SMF).
A Bragg grating is an example of this type of photonic crystal. One-dimensional photonic crystals can include layers of non-linear optical materials in which the non-linear behaviour is accentuated due to field enhancement at wavelengths near a so-called degenerate band edge.
Perhaps the simplest optical waveguide is the dielectric slab waveguide, [2] also called a planar waveguide. [3] Owing to their simplicity, slab waveguides are often used as toy models but also find application in on-chip devices like arrayed waveguide gratings and acousto-optic filters and modulators .
The diffracted light from each waveguide within the grating undergoes constructive interference, resulting in a refocusing of the light at the output waveguides (5). The spatial position of the output channels is wavelength-dependent, determined by the array phase shift induced by the constant length increment in the grating waveguides. [2]