Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace.It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to ...
The relationship between the exponential distribution and the Laplace distribution allows for a simple method for simulating bivariate asymmetric Laplace variables (including for the case of =). Simulate a bivariate normal random variable vector Y {\displaystyle \mathbf {Y} } from a distribution with μ 1 = μ 2 = 0 {\displaystyle \mu _{1}=\mu ...
The Landau distribution; The Laplace distribution; The Lévy skew alpha-stable distribution or stable distribution is a family of distributions often used to characterize financial data and critical behavior; the Cauchy distribution, Holtsmark distribution, Landau distribution, Lévy distribution and normal distribution are special cases.
The Asymmetric Laplace distribution is commonly used with an alternative parameterization for performing quantile regression in a Bayesian inference context. [4] Under this approach, the κ {\displaystyle \kappa } parameter describing asymmetry is replaced with a p {\displaystyle p} parameter indicating the percentile or quantile desired.
Well-known families in which the functional form of the distribution is consistent throughout the family include the following: Normal distribution; Elliptical distributions; Cauchy distribution; Uniform distribution (continuous) Uniform distribution (discrete) Logistic distribution; Laplace distribution; Student's t-distribution
In probability theory and statistics, the log-Laplace distribution is the probability distribution of a random variable whose logarithm has a Laplace distribution. If X has a Laplace distribution with parameters μ and b, then Y = e X has a log-Laplace distribution. The distributional properties can be derived from the Laplace distribution.
This technique was originally presented in the book by Laplace (1774). In Bayesian statistics, Laplace's approximation can refer to either approximating the posterior normalizing constant with Laplace's method or approximating the posterior distribution with a Gaussian centered at the maximum a posteriori estimate.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.