When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).

  3. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  4. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Kernel methods become computationally unfeasible when the number of points is so large such that the kernel matrix cannot be stored in memory.. If is the number of training examples, the storage and computational cost required to find the solution of the problem using general kernel method is () and () respectively.

  5. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    In practice, this is faster because Gaussian blur is a separable filter. The difference of Gaussians can be thought of as an approximation of the Mexican hat kernel function used for the Laplacian of the Gaussian operator. The key observation is that the family of Gaussians is the fundamental solution of the heat equation

  6. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    A simple answer is to sample the continuous Gaussian, yielding the sampled Gaussian kernel. However, this discrete function does not have the discrete analogs of the properties of the continuous function, and can lead to undesired effects, as described in the article scale space implementation.

  7. Scale space implementation - Wikipedia

    en.wikipedia.org/wiki/Scale_space_implementation

    This is the discrete counterpart of the continuous Gaussian in that it is the solution to the discrete diffusion equation (discrete space, continuous time), just as the continuous Gaussian is the solution to the continuous diffusion equation. [2] [3] [5] This filter can be truncated in the spatial domain as for the sampled Gaussian

  8. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    For non-Gaussian likelihoods, there is no closed form solution for the posterior distribution or for the marginal likelihood. However, the marginal likelihood can be approximated under a Laplace, variational Bayes or expectation propagation (EP) approximation frameworks for multiple output classification and used to find estimates for the ...

  9. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.