Search results
Results From The WOW.Com Content Network
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
Let (Ω, Σ, P) be a probability space.Let X : I × Ω → S be a stochastic process, where the index set I and state space S are both topological spaces.Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I → S is continuous as a function of topological spaces for P-almost all ω in Ω.
That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset E {\displaystyle E\,} of the sample space Ω {\displaystyle \Omega \,} .
For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2] A sample space, , which is the set of all possible outcomes. An event space, which is a set of events, , an event being a set of outcomes in the sample space.
The power set of the sample space is formed by considering all different collections of possible results. For example, rolling a die can produce six possible results. One collection of possible results gives an odd number on the die. Thus, the subset {1,3,5} is an element of the power set of the sample space of dice rolls. These collections are ...
The sample space, often represented in notation by , is the set of all possible outcomes of a random phenomenon being observed. The sample space may be any set: a set of real numbers, a set of descriptive labels, a set of vectors, a set of arbitrary non-numerical values, etc. For example, the sample space of a coin flip could be Ω = {"heads ...
A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind. A mathematical description of an experiment consists of three parts: A sample space, Ω (or S), which is the set of all possible outcomes.
A subset of the sample space of a procedure or experiment (i.e. a possible outcome) to which a probability can be assigned. For example, on rolling a die, "getting a three" is an event (with a probability of 1 ⁄ 6 if the die is fair), as is "getting a five or a six" (with a probability of 1 ⁄ 3).