Search results
Results From The WOW.Com Content Network
The crosslinks which bond the polymers of a hydrogel fall under two general categories: physical hydrogels and chemical hydrogels. Chemical hydrogels have covalent cross-linking bonds, whereas physical hydrogels have non-covalent bonds. [citation needed] Chemical hydrogels can result in strong reversible or irreversible gels due to the covalent ...
Hydrogel dressings exhibit chemical or physical cross-linking.Chemical cross-linking involves formation of covalent bonds between polymer chains. Chemically cross-linked hydrogel dressings are synthesized by chain-growth polymerization, step-growth polymerization, enzymes, or irradiation polymerization.
In vulcanization, sulfur is the cross-linking agent. Its introduction changes rubber to a more rigid, durable material associated with car and bike tires. This process is often called sulfur curing. In most cases, cross-linking is irreversible, and the resulting thermosetting material will degrade or burn if heated, without melting. Chemical ...
Hydrogel. A mixture of acrylic acid, water, cross-linking agents and UV initiator chemicals are blended and placed either on a moving belt or in large tubs. The liquid mixture then goes into a "reactor" which is a long chamber with a series of strong UV lights. The UV radiation drives the polymerization and cross-linking reactions.
Self-healing hydrogels are a specialized type of polymer hydrogel.A hydrogel is a macromolecular polymer gel constructed of a network of crosslinked polymer chains. Hydrogels are synthesized from hydrophilic monomers by either chain or step growth, along with a functional crosslinker to promote network formation.
Similar to physical solidification, some chemical crosslinking methods have been developed to produce hydrogel fibers. And the key for the achievement of hydrogel production through the chemical crosslinking method is the effective separation between the formed network and the tube wall.
Drug-loaded dextran cross-linked hydrogel. Dextran hydrogels and dextran conjugate hydrogels are heavily cross-linked polymeric networks that have a strong affinity for water. These gels have soft, elastic physical properties and are biocompatible and biodegradable. [1] Dextran hydrogels have also been shown to be stable and safe in vivo. [2]
The porous, interconnecting network of nanocomposite hydrogels, created through cross-link, enable wastes and nutrients to easily enter and exit the structure, and their elastomeric properties let them acquire the desired anatomical shape without needing prior molding.