When.com Web Search

  1. Ads

    related to: what are critical values calculus examples for math

Search results

  1. Results From The WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The value of the function at a critical point is a critical value. [ 1 ] More specifically, when dealing with functions of a real variable , a critical point, also known as a stationary point , is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable ). [ 2 ]

  3. Sard's theorem - Wikipedia

    en.wikipedia.org/wiki/Sard's_theorem

    In mathematics, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical values (that is, the image of the set of critical points) of a smooth function f from one Euclidean space or manifold to another is a null set, i.e., it has Lebesgue measure 0.

  4. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    For example, if a bounded differentiable function f defined on a closed interval in the real line has a single critical point, which is a local minimum, then it is also a global minimum (use the intermediate value theorem and Rolle's theorem to prove this by contradiction). In two and more dimensions, this argument fails.

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    In mathematics, differential calculus is a subfield of calculus ... (and the value of f at x is called a critical value). ... (For example, f(x) = x 3 has a critical ...

  6. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)

  7. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    This means that the rank at the critical point is lower than the rank at some neighbour point. In other words, let k be the maximal dimension of the open balls contained in the image of f; then a point is critical if all minors of rank k of f are zero. In the case where m = n = k, a point is critical if the Jacobian determinant is zero.

  9. Critical value - Wikipedia

    en.wikipedia.org/wiki/Critical_value

    Critical value or threshold value can refer to: A quantitative threshold in medicine, chemistry and physics; Critical value (statistics), boundary of the acceptance region while testing a statistical hypothesis; Value of a function at a critical point (mathematics) Critical point (thermodynamics) of a statistical system.