Search results
Results From The WOW.Com Content Network
Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
In these formulas, ... If a distribution does not have a finite expected value, ... and is a simple example of a shrinkage estimator: ...
Note in the later section “Maximum likelihood” we show that under the additional assumption that errors are distributed normally, the estimator ^ is proportional to a chi-squared distribution with n – p degrees of freedom, from which the formula for expected value would immediately follow. However the result we have shown in this section ...
This shows that the expected value of g(X) is encoded entirely by the function g and the density f of X. [6] The assumption that g is differentiable with nonvanishing derivative, which is necessary for applying the usual change-of-variables formula, excludes many typical cases, such as g(x) = x 2.
The bias is also the expected value of the error, since (^) = (^). If the parameter is the bull's eye of a target and the arrows are estimates, then a relatively high absolute value for the bias means the average position of the arrows is off-target, and a relatively low absolute bias means the average position of the arrows is on target.
If p = 1/n and X is geometrically distributed with parameter p, then the distribution of X/n approaches an exponential distribution with expected value 1 as n → ∞, since (/ >) = (>) = = = [()] [] =. More generally, if p = λ/n, where λ is a parameter, then as n→ ∞ the distribution of X/n approaches an exponential distribution with rate ...