When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/ShockleyQueisser_limit

    The ShockleyQueisser limit for the efficiency of a solar cell, without concentration of solar radiation. The curve is wiggly because of absorption bands in the atmosphere. In the original paper, [1] the solar spectrum was approximated by a smooth curve, the 6000K blackbody spectrum. As a result, the efficiency graph was smooth and the values ...

  3. Talk:Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/Talk:ShockleyQueisser_limit

    The numbers are normally not similar as you suggest. But in any case, f c cannot be more than 1, and the upper limit (the Shockley-Queisser limit) requires taking f c = 1. Eric Kvaalen 19:05, 6 September 2016 (UTC) Yes, virtually all above-gap photons come from recombination, but not all recombinations create above-bandgap photons.

  4. Open-circuit voltage - Wikipedia

    en.wikipedia.org/wiki/Open-circuit_voltage

    Black curve: The highest possible open-circuit voltage of a solar cell in the Shockley-Queisser model under unconcentrated sunlight, as a function of the semiconductor bandgap. The red dotted line shows that this voltage is always smaller than the bandgap voltage.

  5. Solar-cell efficiency - Wikipedia

    en.wikipedia.org/wiki/Solar-cell_efficiency

    The ShockleyQueisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight at 273 K. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of ~34% can be exceeded by multijunction solar cells.

  6. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    The ShockleyQueisser limit gives the maximum possible efficiency of a single-junction solar cell under un-concentrated sunlight, as a function of the semiconductor band gap. If the band gap is too high, most daylight photons cannot be absorbed; if it is too low, then most photons have much more energy than necessary to excite electrons ...

  7. Thermodynamic efficiency limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_efficiency_limit

    The Shockley-Queisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of about 34% can be exceeded by multijunction solar cells.

  8. Intermediate band photovoltaics - Wikipedia

    en.wikipedia.org/wiki/Intermediate_band...

    They assumed no carriers were collected at the IB and that the device was under full concentration. [1] They found the maximum efficiency to be 63.2%, for a bandgap of 1.95eV with the IB 0.71eV from either the valence or conduction band. [1] Under one sun illumination the limiting efficiency is 47%. [2]

  9. File:ShockleyQueisserFullCurve.svg - Wikipedia

    en.wikipedia.org/wiki/File:ShockleyQueisserFull...

    English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell. The x-axis is the bandgap of the solar cell, the y-axis is the highest possible efficiency (ratio of electrical power output to light power input). (Assumes a single-junction solar cell under unconcentrated light, and some other assumptions too.)