Search results
Results From The WOW.Com Content Network
Saturated hydraulic conductivity, K sat, describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.
Hydraulic conductivity (K) is a property of soil that describes the ease with which water can move through pore spaces. It depends on the permeability of the material (pores, compaction) and on the degree of saturation. Saturated hydraulic conductivity, K sat, describes water movement through saturated media. Where hydraulic conductivity has ...
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
Values of hydraulic conductivity, , can vary by many orders of magnitude depending on the soil type. Clays may have hydraulic conductivity as small as about , gravels may have hydraulic conductivity up to about . Layering and heterogeneity and disturbance during the sampling and testing process make the accurate measurement of soil hydraulic ...
Soil particles can be classified by their chemical composition as well as their size. The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, [1] but the mineralogy of those particles can strongly modify those properties. The mineralogy of ...
The Richards equation in any of its forms involves soil hydraulic properties, which is a set of five parameters representing soil type. The soil hydraulic properties typically consist of water retention curve parameters by van Genuchten: [9] (,,,,), where is the inverse of air entry value [L −1], is the pore size distribution parameter ...
Hooghoudt's equation can be written as:. [3] Q L 2 = 8 Kb d (Dd - Dw) + 4 Ka (Dd - Dw) 2. where: Q = steady state drainage discharge rate (m/day) Ka = hydraulic conductivity of the soil above drain level (m/day) Kb = hydraulic conductivity of the soil below drain level (m/day) Di = depth of the impermeable layer below drain level (m)
At a potential of 0 kPa, the soil is in a saturation state. At saturation, all soil pores are filled with water, and water typically drains from large pores by gravity. At a potential of −33 kPa, or −1/3 bar, (−10 kPa for sand), soil is at field capacity. Typically, at field capacity, air is in the macropores, and water is in the micropores.