Search results
Results From The WOW.Com Content Network
Computational models adopt a variety of abstractions in order to describe complex oscillatory dynamics observed in brain activity. Many models are used in the field, each defined at a different level of abstraction and trying to model different aspects of neural systems.
Biological neuron models, also known as spiking neuron models, [1] are mathematical descriptions of the conduction of electrical signals in neurons. Neurons (or nerve cells) are electrically excitable cells within the nervous system, able to fire electric signals, called action potentials, across a neural network.
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...
Closely related to IF model is a model called Spike Response Model (SRM) (Gerstner, W. (1995) [15] Pages 738-758) that is dependent on impulse function response convoluted with the input stimulus signal. This forms a base for a large number of models developed for spiking neural networks.
A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.
Models of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools ...
A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. [1] Multiple neural circuits interconnect with one another to form large scale brain networks. [2] Neural circuits have inspired the design of artificial neural networks, though there are significant differences.
A multiple timescales recurrent neural network (MTRNN) is a neural-based computational model that can simulate the functional hierarchy of the brain through self-organization depending on the spatial connection between neurons and on distinct types of neuron activities, each with distinct time properties.