Search results
Results From The WOW.Com Content Network
In this algorithm, one recursively draws a line to split the vertices into two sets. The Delaunay triangulation is computed for each set, and then the two sets are merged along the splitting line. Using some clever tricks, the merge operation can be done in time O( n ) , so the total running time is O( n log n ) .
The proposed system involves converting the input image into a format such that the number of objects can be calculated based on the connected components present in the enhanced image. This project work also aims at determining the correct value of density by clearing the objects touching the borders of the image.
A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.
In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a line is typically a primitive (undefined) object type , so such visualizations will not necessarily be appropriate.
The projective linear group of n-space = (+) has (n + 1) 2 − 1 dimensions (because it is (,) = ((+,)), projectivization removing one dimension), but in other dimensions the projective linear group is only 2-transitive – because three collinear points must be mapped to three collinear points (which is not a restriction in the projective line ...
By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so (3) to its Lie group SO(3) .
Horizontal shear of a square into parallelograms with factors and =. In the plane =, a horizontal shear (or shear parallel to the x-axis) is a function that takes a generic point with coordinates (,) to the point (+,); where m is a fixed parameter, called the shear factor.
For any point A and line l not incident with it (an anti-flag) there is exactly one line m incident with A (that is, A I m), that does not meet l (known as Playfair's axiom), and satisfying the non-degeneracy condition: There exists a triangle, i.e. three non-collinear points. The lines l and m in the statement of Playfair's axiom are said to ...