Search results
Results From The WOW.Com Content Network
Beam divergence usually refers to a beam of circular cross section, but not necessarily so. A beam may, for example, have an elliptical cross section, in which case the orientation of the beam divergence must be specified, for example with respect to the major or minor axis of the elliptical cross section.
The beam divergence of a laser beam is a measure for how fast the beam expands far from the beam waist. It is usually defined as the derivative of the beam radius with respect to the axial position in the far field, i.e., in a distance from the beam waist which is much larger than the Rayleigh length. This definition yields a divergence half-angle.
From the above expression for divergence, this means the Gaussian beam model is only accurate for beams with waists larger than about 2λ/π. Laser beam quality is quantified by the beam parameter product (BPP). For a Gaussian beam, the BPP is the product of the beam's divergence and waist size w 0. The BPP of a real beam is obtained by ...
In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.
In laser science, the beam parameter product (BPP) is the product of a laser beam's divergence angle (half-angle) and the radius of the beam at its narrowest point (the beam waist). [1] The BPP quantifies the quality of a laser beam, and how well it can be focused to a small spot.
The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by diffraction theory. Thus, the "pencil beam" directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of ...
Laser physicists typically choose to make θ the divergence of the beam: the far-field angle between the beam axis and the distance from the axis at which the irradiance drops to e −2 times the on-axis irradiance. The NA of a Gaussian laser beam is then related to its minimum spot size ("beam waist") by
Gaussian beam width () as a function of the axial distance .: beam waist; : confocal parameter; : Rayleigh length; : total angular spread In optics and especially laser science, the Rayleigh length or Rayleigh range, , is the distance along the propagation direction of a beam from the waist to the place where the area of the cross section is doubled. [1]