Search results
Results From The WOW.Com Content Network
Lattice-based cryptographic constructions hold a great promise for public-key post-quantum cryptography. [38] Indeed, the main alternative forms of public-key cryptography are schemes based on the hardness of factoring and related problems and schemes based on the hardness of the discrete logarithm and related problems.
IEEE P1363 is an Institute of Electrical and Electronics Engineers (IEEE) standardization project for public-key cryptography. It includes specifications for: Traditional public-key cryptography (IEEE Std 1363-2000 and 1363a-2004) Lattice-based public-key cryptography (IEEE Std 1363.1-2008) Password-based public-key cryptography (IEEE Std 1363. ...
Post-quantum cryptography (PQC), sometimes referred to as quantum-proof, quantum-safe, or quantum-resistant, is the development of cryptographic algorithms (usually public-key algorithms) that are currently thought to be secure against a cryptanalytic attack by a quantum computer.
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices.The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic ...
Post-Quantum Cryptography Standardization [1] is a program and competition by NIST to update their standards to include post-quantum cryptography. [2] It was announced at PQCrypto 2016. [ 3 ] 23 signature schemes and 59 encryption/ KEM schemes were submitted by the initial submission deadline at the end of 2017 [ 4 ] of which 69 total were ...
NTRU is an open-source public-key cryptosystem that uses lattice-based cryptography to encrypt and decrypt data. It consists of two algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign, which is used for digital signatures. Unlike other popular public-key cryptosystems, it is resistant to attacks using Shor's algorithm ...
Public-key cryptosystems use a public key for encryption and a private key for decryption. Diffie–Hellman key exchange; RSA encryption; Rabin cryptosystem; Schnorr signature; ElGamal encryption; Elliptic-curve cryptography; Lattice-based cryptography; McEliece cryptosystem; Multivariate cryptography; Isogeny-based cryptography
The Goldreich–Goldwasser–Halevi (GGH) lattice-based cryptosystem is a broken asymmetric cryptosystem based on lattices. There is also a GGH signature scheme which hasn't been broken as of 2024. The Goldreich–Goldwasser–Halevi (GGH) cryptosystem makes use of the fact that the closest vector problem can be a hard problem.