When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    A vertex with a large degree, also called a heavy node, results in a large diagonal entry in the Laplacian matrix dominating the matrix properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices, by dividing the entries of the Laplacian matrix by the vertex degrees.

  3. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    The general approach to spectral clustering is to use a standard clustering method (there are many such methods, k-means is discussed below) on relevant eigenvectors of a Laplacian matrix of . There are many different ways to define a Laplacian which have different mathematical interpretations, and so the clustering will also have different ...

  4. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The smallest pair of cospectral mates is {K 1,4, C 4 ∪ K 1}, comprising the 5-vertex star and the graph union of the 4-vertex cycle and the single-vertex graph [1]. The first example of cospectral graphs was reported by Collatz and Sinogowitz [2] in 1957. The smallest pair of polyhedral cospectral mates are enneahedra with eight vertices each ...

  5. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]

  6. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]

  7. Discrete Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Discrete_Laplace_operator

    In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.

  8. Algebraic graph theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_graph_theory

    Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric , combinatoric , or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra , the use of group theory , and the study of graph invariants .

  9. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    In applications vertex functions are useful to label the vertices of the nodes. For example, in graph-based data clustering, each node represents a data point and a vertex function is used to identify cluster membership of the nodes.