When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. [ 1 ]

  3. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron, from its operator's manual The Mark I Perceptron was a pioneering supervised image classification learning system developed by Frank Rosenblatt in 1958. It was the first implementation of an Artificial Intelligence (AI) machine.

  4. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    The perceptron algorithm is an online learning algorithm that operates by a principle called "error-driven learning". It iteratively improves a model by running it on training samples, then updating the model whenever it finds it has made an incorrect classification with respect to a supervised signal.

  5. Symbolic artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Symbolic_artificial...

    More formally, Valiant introduced Probably Approximately Correct Learning (PAC Learning), a framework for the mathematical analysis of machine learning. [63] Symbolic machine learning encompassed more than learning by example. E.g., John Anderson provided a cognitive model of human learning where skill practice results in a compilation of rules ...

  6. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable .

  7. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  8. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  9. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.