Search results
Results From The WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [−2,+3]. Also shown are the two real roots and the local minimum ...
Closed graph theorem [5] — If : is a map from a topological space into a Hausdorff space, then the graph of is closed if : is continuous. The converse is true when Y {\displaystyle Y} is compact .
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
Intuitively, the graph of a bounded function stays within a horizontal band, while the graph of an unbounded function does not. In mathematics , a function f {\displaystyle f} defined on some set X {\displaystyle X} with real or complex values is called bounded if the set of its values is bounded .
A function can only have one output, y, for each unique input, x. If a vertical line intersects a curve on an xy-plane more than once then for one value of x the curve has more than one value of y, and so, the curve does not represent a function. If all vertical lines intersect a curve at most once then the curve represents a function. [1]
In this case, Y is the set of real numbers R with the standard metric d Y (y 1, y 2) = |y 1 − y 2 |, and X is a subset of R. In general, the inequality is (trivially) satisfied if x 1 = x 2. Otherwise, one can equivalently define a function to be Lipschitz continuous if and only if there exists a constant K ≥ 0 such that, for all x 1 ≠ x 2,
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...