Search results
Results From The WOW.Com Content Network
As ammonium nitrate is a salt, both the cation, NH + 4, and the anion, NO − 3, may take part in chemical reactions. Solid ammonium nitrate decomposes on heating. At temperatures below around 300 °C, the decomposition mainly produces nitrous oxide and water: NH 4 NO 3 → N 2 O + 2 H 2 O. At higher temperatures, the following reaction ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The combination of urea and ammonium nitrate has an extremely low critical relative humidity (18% at 30 °C) and can therefore only be used in liquid fertilizers. The most commonly used grade of these fertilizer solutions is UAN 32.0.0 (32%N) known as UN32 or UN-32, which consists of 45% ammonium nitrate, 35% urea and only 20% water. Other ...
Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH 3 (aq). Although the name ammonium hydroxide suggests a salt with the composition [NH + 4][OH −
Enthalpy change of solution for some selected compounds: hydrochloric acid-74.84 ammonium nitrate +25.69 ammonia-30.50 potassium hydroxide-57.61 caesium hydroxide-71.55 sodium chloride +3.87 potassium chlorate +41.38 acetic acid-1.51 sodium hydroxide-44.50 Change in enthalpy ΔH o in kJ/mol in water at 25°C [2]
A common nitrate test, known as the brown ring test [2] can be performed by adding iron(II) sulfate to a solution of a nitrate, then slowly adding concentrated sulfuric acid such that the acid forms a layer below the aqueous solution. A brown ring will form at the junction of the two layers, indicating the presence of the nitrate ion. [3]
Fritz Haber, 1918. The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [2] [3] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst:
The solution is said to be neutral as it is neither acidic nor alkaline. The pH of such a solution is close to a value of 7; the exact pH value is dependent on the temperature of the solution. Neutralization is an exothermic reaction. The standard enthalpy change for the reaction H + + OH − → H 2 O is −57.30 kJ/mol.